Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
BMJ Open ; 13(4): e071968, 2023 04 17.
Article in English | MEDLINE | ID: covidwho-2290802

ABSTRACT

INTRODUCTION: Although studies have examined the utility of clinical decision support tools in improving acute kidney injury (AKI) outcomes, no study has evaluated the effect of real-time, personalised AKI recommendations. This study aims to assess the impact of individualised AKI-specific recommendations delivered by trained clinicians and pharmacists immediately after AKI detection in hospitalised patients. METHODS AND ANALYSIS: KAT-AKI is a multicentre randomised investigator-blinded trial being conducted across eight hospitals at two major US hospital systems planning to enrol 4000 patients over 3 years (between 1 November 2021 and 1 November 2024). A real-time electronic AKI alert system informs a dedicated team composed of a physician and pharmacist who independently review the chart in real time, screen for eligibility and provide combined recommendations across the following domains: diagnostics, volume, potassium, acid-base and medications. Recommendations are delivered to the primary team in the alert arm or logged for future analysis in the usual care arm. The planned primary outcome is a composite of AKI progression, dialysis and mortality within 14 days from randomisation. A key secondary outcome is the percentage of recommendations implemented by the primary team within 24 hours from randomisation. The study has enrolled 500 individuals over 8.5 months. Two-thirds were on a medical floor at the time of the alert and 17.8% were in an intensive care unit. Virtually all participants were recommended for at least one diagnostic intervention. More than half (51.6%) had recommendations to discontinue or dose-adjust a medication. The median time from AKI alert to randomisation was 28 (IQR 15.8-51.5) min. ETHICS AND DISSEMINATION: The study was approved by the ethics committee of each study site (Yale University and Johns Hopkins institutional review board (IRB) and a central IRB (BRANY, Biomedical Research Alliance of New York). We are committed to open dissemination of the data through clinicaltrials.gov and sharing of data on an open repository as well as publication in a peer-reviewed journal on completion. TRIAL REGISTRATION NUMBER: NCT04040296.


Subject(s)
Acute Kidney Injury , COVID-19 , Humans , SARS-CoV-2 , Renal Dialysis , Acute Kidney Injury/diagnosis , Acute Kidney Injury/therapy , Kidney , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
2.
Am J Kidney Dis ; 79(2): 257-267.e1, 2022 02.
Article in English | MEDLINE | ID: covidwho-1575031

ABSTRACT

RATIONALE & OBJECTIVE: Acute kidney injury (AKI) is common in patients with coronavirus disease 2019 (COVID-19) and associated with poor outcomes. Urinary biomarkers have been associated with adverse kidney outcomes in other settings and may provide additional prognostic information in patients with COVID-19. We investigated the association between urinary biomarkers and adverse kidney outcomes among patients hospitalized with COVID-19. STUDY DESIGN: Prospective cohort study. SETTING & PARTICIPANTS: Patients hospitalized with COVID-19 (n=153) at 2 academic medical centers between April and June 2020. EXPOSURE: 19 urinary biomarkers of injury, inflammation, and repair. OUTCOME: Composite of KDIGO (Kidney Disease: Improving Global Outcomes) stage 3 AKI, requirement for dialysis, or death within 60 days of hospital admission. We also compared various kidney biomarker levels in the setting of COVID-19 versus other common AKI settings. ANALYTICAL APPROACH: Time-varying Cox proportional hazards regression to associate biomarker level with composite outcome. RESULTS: Out of 153 patients, 24 (15.7%) experienced the primary outcome. Twofold higher levels of neutrophil gelatinase-associated lipocalin (NGAL) (HR, 1.34 [95% CI, 1.14-1.57]), monocyte chemoattractant protein (MCP-1) (HR, 1.42 [95% CI, 1.09-1.84]), and kidney injury molecule 1 (KIM-1) (HR, 2.03 [95% CI, 1.38-2.99]) were associated with highest risk of sustaining primary composite outcome. Higher epidermal growth factor (EGF) levels were associated with a lower risk of the primary outcome (HR, 0.61 [95% CI, 0.47-0.79]). Individual biomarkers provided moderate discrimination and biomarker combinations improved discrimination for the primary outcome. The degree of kidney injury by biomarker level in COVID-19 was comparable to other settings of clinical AKI. There was evidence of subclinical AKI in COVID-19 patients based on elevated injury biomarker level in patients without clinical AKI defined by serum creatinine. LIMITATIONS: Small sample size with low number of composite outcome events. CONCLUSIONS: Urinary biomarkers are associated with adverse kidney outcomes in patients hospitalized with COVID-19 and may provide valuable information to monitor kidney disease progression and recovery.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Biomarkers , Creatinine , Humans , Lipocalin-2 , Prognosis , Prospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL